
Subspace: A Solution to the Farmer’s Dilemma
Jeremiah Wagstaff

Subspace Labs
Palo Alto, California

jeremiah@subspace.network

Abstract—In an effort to make blockchains more energy-
efficient, egalitarian, and decentralized, several new protocols
employ consensus based on Proofs-of-Capacity (PoC), which
replace compute-intensive mining with storage-intensive farming.
We observe that PoC consensus introduces a unique mechanism
design challenge, referred to as the farmer’s dilemma, which
suggests that existing constructions are not actually incentive
compatible. Simply put, farmers must decide whether to allocate
scarce storage resources towards either maintaining the chain
state and history or maximizing the amount of space they pledge
towards consensus. Rational farmers will always choose the latter,
at best becoming light clients, while at worst encouraging pooled
farming under a few trusted operators. To resolve this dilemma,
we introduce Subspace, a PoC blockchain in which farmers
maintain neither the state nor the history, while retaining the
security properties and decentralization benefits of a full node.
Consensus in Subspace is based on proofs of replicated storage
of the history of the blockchain itself. Farmers store the history
collectively, many times over, with each farmer storing as many
replicas as their disk space allows. Consensus and computation
are then decoupled, such that farmers only propose an ordering
for transactions, while staked executor nodes maintain the state
and compute transitions. This separation of concerns significantly
reduces the storage and compute overhead needed to operate a
farmer, even in an Ethereum-style execution model, allowing for
high levels of participation in consensus by ordinary users with
commodity hardware.

I. BACKGROUND

Nakamoto-style blockchains, such as Bitcoin [1] and
Ethereum [2], [3], combine the longest-chain fork-choice rule
with a proof-of-work (PoW) mining puzzle. These systems are
provably secure, with respect to safety and liveness, given an
honest majority of miners [4]. Unlike legacy Byzantine Fault
Tolerant (BFT) consensus algorithms, participation is both
permissionless and scalable. These properties are the standard
against which all new blockchain consensus protocols are
measured. Unfortunately, the security afforded by PoW comes
at a massive cost in electricity. Collectively, miners on Bitcoin
and Ethereum consume the energy budget of a medium-
sized country, with these numbers steadily increasing as more
capital flows into the system. This raises the critical question
of whether cryptocurrencies can reach wide scale adoption
without adding more fuel to the fire of global warming.

Moreover, while mining was originally envisioned as a
democratic and egalitarian process, as expressed by one-
CPU-one-vote, it quickly became a highly commoditized and
centralized enterprise. Today participation in Bitcoin mining
instead follows one-ASIC-one-vote, assuming a miner also

Research conducted with support from NSF-SBIR Grant 1844037

has access to low-cost electricity. Ethereum mining sought
to circumvent this by adopting one-GPU-one-vote, but this
too has proven susceptible to special purpose hardware and
still has the tendency to concentrate in regions with low-
cost electricity. This raises another key question of whether
or not existing cryptocurrencies are actually decentralized, or
if we have simply substituted one trusted third-party (financial
institutions) for another (mining pools).

These challenges have served as a rallying cry for a di-
verse group of hackers, researchers, and engineers who have
sought to design a sustainable blockchain that holds true to
Nakamoto’s vision for a more democratic and decentralized
future. The most well-known solution to this problem is proof-
of-stake (PoS), which employs a system of virtual mining
based on one’s wealth, under the adage one-coin-one-vote.
While PoS clearly solves the sustainability problem, it does
not hold true to Nakamoto’s vision. It instead reflects a permis-
sioned and plutocratic alternative, which also exhibits strong
tendencies towards centralization. In fact, PoS systems serve
to magnify the existing wealth disparity in cryptocurrencies,
which are already significantly larger than historically high
disparities in global fiat wealth distribution, effectively serving
to make the rich even richer.

What is instead needed is a cryptographic proof system
based on an underlying resource that is already massively
distributed and which does not lend itself to special-purpose
hardware. Enter proof-of-capacity (PoC)1, which replaces
compute-intensive mining with storage-intensive farming, un-
der the maxim one-disk-one-vote. Disk-based consensus seems
like an obvious choice, as storage hardware has long been
commoditized, consumes negligible electricity, and exists in
abundance across end-user devices. As it turns out, implement-
ing a PoC such that it does not devolve back into PoW, without
resorting to a permissioned model, is highly non-trivial, as
witnessed by the paucity of live chains to date. Moreover,
all existing PoC blockchain designs fail to address a critical
mechanism design challenge, to which we turn next.

II. THE FARMER’S DILEMMA

Observe that in any PoC blockchain a farmer is, by-
definition, incentivized to allocate as much of its scarce storage
resources as possible towards consensus. Contrast this with
the desire for all full nodes to reserve storage for maintaining

1We use this as an umbrella term, capturing proofs of space, storage,
replication, and space-time



both the current state and history of the blockchain. These
competing requirements pose a challenge to farmers: do they
adhere to the desired behavior, retaining the state and history,
or do they seek to maximize their own rewards, instead
dedicating all available space towards consensus? When faced
with this farmer’s dilemma rational farmers will always choose
the latter, effectively becoming light clients, while degrading
both the security and decentralization of the network. This
implies that any PoC blockchain would eventually consolidate
into a single large farming pool, with even greater speed than
has been previously observed with PoW and PoS chains.

Recall that in any Nakamoto-style blockchain, a new con-
sensus node must synchronize the chain state from genesis, in
order to be assured they are actually on the longest valid chain,
which implies the availability of the chain history. If a large
fraction of nodes stores the history, this data will be readily
available, and the network may be considered decentralized.
However, as time goes by and the history grows, the storage
burden on all full nodes grows as well, and some nodes may
choose to prune the history, instead only storing the current
state of the chain. This trend was already clear in the Bitcoin
network as early as 2014 [5]. If full nodes do not store the
history, new nodes must instead rely on altruistic archival
nodes or third-party data stores for initial synchronization,
resulting in a more centralized network. In a PoC blockchain
farmers have nothing to gain by storing the history, but clearly
stand to lose out on block rewards, especially as the history
grows, consuming a larger fraction of their available disk
space.

In order to extend the longest valid chain and collect fees
for valid transactions, a farmer must maintain the memoized
state of the chain. As the state is often too large to reside in
memory, it too must compete with consensus for precious disk
space. While perhaps negligible for low-throughput UTXO
style chains, state storage is significant for any EVM style
chain, or any chain which seeks base layer scalability. Fur-
thermore, all farmers are also required to compute the state
transition for each new block as part of the ongoing verification
process, imposing a non-negligible computational overhead,
which conflicts with the desire for farming to be a lightweight
task. The farmer’s dilemma then serves to exacerbate the well-
known verifier’s dilemma, by further raising the opportunity
cost of verification [6].

If a farmer is willing to adopt a weaker security model,
they may instead join a trusted farming pool, whereby they
delegate transaction verification and block proposing functions
to an operator, while the farmer focuses solely on evaluating
the block challenge against their plots2. This has the added
benefit of drastically reducing the computational overhead
required to participate in consensus, which fits with the ideal
of many small farmers pledging unused disk space on their
home computers. When a farmer finds a valid solution to the
block challenge, they send it to the pool operator, who forges

2Trusted pools are altogether different from the pooling approach suggested
by Chia, which only serves to smooth out rewards over time, and does not
resolve the farmer’s dilemma. (www.chia.net/2020/11/10/pools-in-chia.html)

the new block in return for a portion of the block reward. As
long as the fee is lower than the opportunity cost of local block
production, a rational farmer would always choose to join a
pool. In PoW blockchains this choice is largely dictated by a
desire for a smoother reward function, since, unlike joining a
farming pool, joining a mining pool does not increase one’s
total rewards.

The chief problem with this model is that it is not decen-
tralized. Although the actual consensus hardware is highly
distributed, compared to existing PoW mining pools, the
operators still present a point of centralization, more akin to
validators in delegated or nominated PoS protocols. However,
PoS systems at least provide strong penalties for misbehavior,
which have worked in practice so far. As farmers in the pooled
model are at best acting as light clients, the scope of action
for malicious or colluding operators is much higher than in
a typical blockchain. The honest majority farmer assumption
becomes an honest majority operator assumption. If that
assumption does not hold, farmers, and most users, will be
unable to distinguish between valid and fraudulent transactions
which appear in the longest chain, allowing operators to create
coins out of thin air or spend farmer and user funds at will.

PoC blockchain design appears to stuck on the horns of a
dilemma. On the one hand, we may abandon the goal of having
farmers retain the history, while doing everything possible to
minimize the burden of maintaining the state such that that
the opportunity costs of running a full node remain negligible,
giving farmers little incentive to pool. This leads to a much
more limited construction, ruling out stateful smart contracts
and even modest base layer scalability. On the other hand, we
can abandon Nakamoto’s vision and accept pooled consensus
as a necessary evil, as has largely been done within the PoW
and PoS communities, while at least rejoicing in the fact that
participation is now fair and sustainable.

In this work we present a third option, which circumvents
the farmer’s dilemma without sacrificing the security or de-
centralization of the network, organized as follows:

1) To prevent farmers from discarding the history, we
construct a novel PoC consensus protocol based on
proofs-of-storage of the history of the blockchain itself,
in which each farmer stores as many provably-unique
replicas of the chain history as their disk space allows.

2) To ensure the history remains available, farmers form
a decentralized storage network, which allows the his-
tory to remain fully-recoverable, load-balanced, and
efficiently-retrievable.

3) To relieve farmers of the burden of maintaining the state
and preforming redundant computation, we apply the
classic technique in distributed systems of decoupling
consensus and computation. Farmers are then solely
responsible for the ordering of transactions, while a
separate class of executor nodes maintain the state and
compute the transitions for each new block.

4) To ensure executors remain accountable for their actions,
we employ a system of staked deposits, verifiable com-
putation, and non-interactive fraud proofs.



For concreteness, we present this approach within the
Ethereum model of a fully-programmable, account-based
blockchain, which periodically commits to the state of all
accounts within the block header, though we believe many
of the proposed techniques could be applied more generally
for any Nakamoto-style blockchain.

III. CONSENSUS

Requirements. We wish to create a longest-chain PoC con-
sensus mechanism which incentivizes farmers to retain the
blockchain history, in order to (partially) circumvent the
farmer’s dilemma. Holding to Nakamoto’s vision, this mech-
anism must be permissionless, while ensuring that the chain
remains secure, with respect to safety and liveness, as long
as honest farmers collectively dedicate more storage than any
cooperating group of attacker nodes. To ensure consensus
retains the fairness of one-disk-one-vote we must discourage
farmers from attempting to augment or replace storage with
computation, by making this behavior economically irrational.

Proofs-of-Archival-Storage. To accomplish these goals, we
base consensus on a useful Proof-of-Storage (PoStorage) [7]
of the history of the blockchain itself. Farmers first create
and store provably unique replicas of the chain history, before
responding to random and publicly verifiable storage audits,
which allow them to forge new blocks. This stands in contrast
to a useless Proof-of-Space (PoSpace), as implemented (inse-
curely) in Burst3 and proposed by Spacemint [8], Chia [9],
and SpaceMesh [10], in which a node stores some randomly
generated data. It can instead be understood as a simpler
construction of Permacoin [11], paired with a more constrained
application of a Filecoin Proof-of-Replication (PoR) [12],
in which the scope of the data inputs are limited to the
state updates to the blockchain, i.e. the block headers and
transaction data. This idea is inspired by the notion of Proof-
of-Unique-Blockchain-Storage [5], as originally proposed by
Sergio Lerner, but utilized directly for consensus.

Hourglass Schemes. Our solution begins with an hourglass
scheme [13] whereby, a prover applies a slow encoding to
a file using a public key. Later, a random segment of the
encoded file is audited by a verifier. To pass the audit, the
prover must demonstrate possession of the encoded segment
within a specified timeout. The timeout is tuned such that it
is computationally infeasible to encode the file in response
to a challenge and still pass the audit, demonstrating that
the prover has retained the entire encoded file with high
probability. Following Lerner, we may adapt this scheme for
the blockchain setting.

Plotting History. To do this, we treat the confirmed history
of the ledger as a single large file, divided into an ever-growing
set of constant-sized, content-addressed pieces. For each piece,
each farmer applies a Pseudo-random Permutation (PRP),
using a unique public identifier (ID) as the encoding key,
such as the hash of their public key. The resulting encoding is

3https://www.burst-coin.org/

stored to disk, while a commitment, or tag, for each encoding
is stored within a sorted binary tree. Each farmer now stores
a provably unique replica of the ledger, and we define the
replication factor as the number of unique ledger replicas
stored across the network.

Choice of Permutation. While any cryptographically secure
PRP will suffice for the codec, an ideal candidate would be
both ASIC resistant and time-asymmetric, without imposing
any new security assumptions. It turns out that we may
construct such a permutation from the difficulty of comput-
ing modular square roots, using the permutation underlying
SLOTH (slow-time hash function) as a guide [14]. This has
the advantage of a near-optimal encoding time on x86-64
architecture, when using a 64-bit prime, while reducing the
decoding time by at least one order of magnitude, significantly
lowering the aggregate verification work done across the
network for each new block.

Storage Audits. To generate a new block, the network issues
an audit, seeking a valid PoR in response to a random
challenge derived from the last block. Any tag which lies
within a self-adjusting network solution range of the challenge
may be used as the basis for a valid PoR. Since farmers store
tags within a sorted binary tree, they may efficiently query
their entire plot for the nearest tag to each challenge. Note
that the quality of the PoR scales logarithmically with respect
to the number of encodings under audit, and may be used to
deduce the total space pledged to the network by all farmers.
Any farmer who seeks to mine encodings on-demand with the
same success probability as an honest farmer would then have
to create the same number of encodings as were written to
disk, within the span of a single block.

Re-introducing Time. To retain a notion of time in the
absence of a mining delay, so that we may enforce the
timeout of the hourglass scheme, we adopt the standard
approach of dividing consensus into discrete time slots and
epochs. To achieve clock synchronization without relying on
a trusted service, such as Network Time Protocol (NTP), we
follow Polkadot by deriving a shared relative clock from the
blockchain itself [15], which remains secure as long as clock
drift, measured over an epoch, is but a small fraction of the
network delay.

Deterring Compression. Note that farmers may simply dis-
card their encodings, while only retaining the much smaller
sorted trees and a single copy of the unencoded history, from
which they can reproduce any valid encoding on-demand. If
a farmer does this many times for different IDs using addi-
tional up-front computation, they may magnify their apparent
storage, effectively compressing their plot and breaking the
fairness of the protocol. To deter this behavior we require that
each commitment be based on a salt, which must be updated at
a regular interval, determined by the total space pledged to the
network and a security parameter L. While a modest interval
will deter farmers who seek to break fairness, by making the
cost of continuously regenerating encodings larger than simply



buying more disks, a shorter interval may be needed initially,
to prevent 51% attacks from dedicated CPU mining pools.

Preventing Grinding. To prevent the winning farmer from
malleating on the contents of a block, in an attempt to influ-
ence subsequent audits in their favor, we follow Spacemint,
and make this impossible by separating the canonical PoR
and the malleable transaction data into two distinct sub-chains,
while basing audit challenges solely on the content of the proof
chain.

Constraining Simulation. In the event of an honest fork,
a farmer could easily solve on both branches, effectively
doubling their apparent space. If all farmers do this publicly,
it will take longer to reach consensus on the longest chain,
and the network becomes susceptible to a disastrous balancing
attack, possible with only a small fraction of storage resources
[16]. If farmers instead do this privately, they may magnify
their apparent storage resource up to a factor e (2.718),
allowing them to more easily engage in selfish farming and
double-spend with only 27% of the total space [9]. Fortunately,
we can make the advantage of these simulation or nothing-at-
stake attacks negligible, by again following Spacemint, and
recycling the same challenge over several consecutive audits
[8], [16], [17], while recognizing that the interval need not be
that large [18].

Handling Equivocation. A farmer still has the ability to
extend both branches of a fork, using the same proof, in
attempt to “hedge their bets”. While this behavior reflects
the most rational choice for the farmer, if left unchecked, it
would result in unbounded perpetual forks and prevent the
network from ever achieving consensus on a single longest
chain. To remedy this, we again follow Spacemint, noting that
equivocation is both detectable and punishable. If a farmer
does sign two blocks using the same proof at the same height
with different parents, they will forfeit their rewards and see
their ID blacklisted from participation in consensus, effectively
burning their plot.

Detecting Long-Range Attacks. Observe that in any PoC
blockchain, an attacker may generate a heavier chain using
only the average amount of space pledged over the chain’s
lifetime, by rewriting history from some fork deep in the
chain’s past [8], [9]. This history-rewriting attack may then be
used to trick new farmers, or those who have been offline since
before the fork, as well as light clients, into believing that the
rewrite is in-fact the longest chain. Note that under proof-of-
space consensus, any revised chain is indistinguishable from
the honest chain, as the content of plots, and the resulting
proofs, are random and independent of any particular chain
history. However, in a proof-of-archival-storage chain, such
as Subspace, these chains are distinguishable, unless the long-
range attacker continuously revises their plot to reflect the new
history they are creating. An indistinguishable history rewrit-
ing attack would therefore require both significant storage and
(only partially parallelizable) computation resources, greatly
reducing, if not ruling out, the feasibility of such an attack. In

order to detect the weaker attack, a node need only sample the
average height from which a valid solution was derived, while
simply favoring the chain with the highest average height.

Security. By modeling the evaluation of the plot as a random
process, similar in principle to the evaluation of a Verifiable
Random Function (VRF) in PoS, we may extend Nakamoto’s
analysis, defined formally in the backbone protocol [4], and
later adapted to the PoS setting [17], to show that we have
the same security guarantees. Specifically, that no single party
with less than one-half of available storage resources may
generate a longer chain, resulting in the formal properties
of safety and liveness. Following Spacemesh, our protocol
only retains these qualities under the assumption that farmers
are economically rational, such that they will always choose
farming over mining, given that farming is the cheaper option
[10]. This condition may be easily maintained, since the cost
of mining is configurable within the protocol.

IV. STORAGE

Given that some farmers may only be able to store a
partial replica of the history, while others may be able to
store it many times over, we shall require a scheme which
ensures the consistency of storage over time. It must be
uniform, such that on average each piece is stored the same
number of times across the network. It must be durable, such
that with high probability. no single piece may be forgotten,
whether accidentally or through malicious intent. It must be
retrievable, both in full and for any single piece, in a manner
which balances requests evenly across all farmers, allowing the
overhead of serving history to remain negligible. It must also
be stored in a manner which is efficiently verifiable, as farmers
must not be expected to either synchronize or retain the
full history. Finally, this must all work in the permissionless
setting, without any central coordination, while accounting for
the dynamic availability of farmers and the uneven growth of
the history over time.

A. Load Balancing

To achieve a uniform distribution of pieces across the
network, we employ a technique inspired by consistent hashing
[19]. Recall that each farmer has a self-assigned ID, as the
hash of their public key, which we may map to a ring over the
domain of the hash function. If the farmer is unable to store a
full replica within its plot, it favors pieces whose ID are closest
to its own ID on the ring, up to the sector size afforded by
its storage. Otherwise, it simply stores as many full replicas,
and one partial, as its storage allows. This scheme has the
benefit of scattering the history, such that a large fraction of
the network would have to be taken offline in order to erase
any single piece, while further ensuring that as more farmers
join the network the average replication factor for any piece
will approach the replication factor of the ledger.

As the history grows, farmers scan new pieces, retaining
only those which fall within their (shrinking) self-assigned
sector, while evicting those on the boundaries. This means that
each farmer will have re-computed one-half of its plot every



time the history doubles in size. However, unlike initial plot-
ting, this computation is amortized over a much longer time
period, such that it imposes negligible additional overhead. To
minimize re-plotting for early farmers, the network will be
seeded with several terabytes of data at genesis, comprising
the history of a few leading blockchains.

While a lazy farmer could choose to deviate from the above
strategy, we note that there is little incentive for doing so, as
it will have no impact on their reward function. At best, it
will save them a negligible amount of computational overhead.
A better strategy would be to instead increase their storage
capacity in step with the history growth, such that their sector
size remains constant, allowing them to retain their otherwise
valid encodings along the boundaries.

A farmer could also employ a sybil strategy, in which
they generate many IDs, allowing them to create many small
partial replicas from the same small slice of the history. While
this still has no impact on their reward function, it could
significantly reduce the bandwidth costs of the initial plotting
phase. To deter this behavior, and instead encourage farmers
to store as many full replicas as possible, we require that
each farmer salt the challenge with their ID. This simple
modification forces a farmer to maintain a unique search tree
and process a separate audit for each ID, increasing their
computational overhead linearly in the number of IDs. We
therefore expect rational farmers to avoid sybil farming, as the
one-time bandwidth savings will quickly be overshadowed by
the higher constant cost of participation in consensus.

B. Durability

To obtain a level of durability many orders of magnitude
greater than simple replication, we apply the well-known
technique of erasure coding [20]. Concretely, at the beginning
of each new epoch, the history for some past epoch may
now be used as the basis for a valid solution. We start by
chunking each block from the newly confirmed epoch into a
constant-sized batch of k source pieces. We then apply an
erasure code with rate one-half, to obtain an additional k
parity pieces. Note that farmers only retain and encode source
or parity pieces which falls within their sector of the ring.
Finally, we construct a Merkle tree over all n pieces in the
batch. Since batches will rarely align neatly with individual
blocks, we aggregate pieces over many blocks until the desired
batch size is obtained. We then construct a much smaller state
header chain which simply commits to the Merkle root of
each batch. This allows a winning farmer to prove that some
encoding, which satisfies the audit, is actually derived from
the confirmed history, without requiring farmers or verifiers to
maintain the history themselves. Instead they are only required
to maintain the much smaller state header chain, which may
be further compressed to just the Merkle roots after initial
synchronization.

C. Retrievability

To ensure the history remains fully retrievable, and therefore
available, we employ a simplified version of a Distributed

Hash Table (DHT). Observe that the notion of distance be-
tween piece and farmer IDs on the ring is equivalent to the
XOR metric, a key component of a Kademlia DHT [21]. If
we simplify a K-DHT, such that each farmer only announces
its ID and contact information, any node may then retrieve a
piece by simply locating a farmer whose ID is close enough to
the piece by XOR distance, before requesting the piece from
that farmer. This reduces the K-DHT from a generic key-value
store into a kind of decentralized domain name service. The
storage overhead for the DHT on each node is tiny, even for a
large number of farmers, and would require only a few hops
at most to locate any particular piece.

To allow for bandwidth efficient and load balanced fetching
of a farmer’s sector during the initial plotting phase, we
may adapt the clever approach pioneered by the BitTorrent
network, by partitioning, multiplexing, and streaming requests
across many nearby peers. Based on the success of BitTorrent,
we expect that an optimistic tit-for-tat piece sharing policy,
combined with the significantly reduced overhead needed to
operate a DHT node and the expected load-balancing of
requests across all nodes, will lead a sufficiently large fraction
of farmers to share their pieces without any direct financial
incentives [22]. A similar approach employed by Arweave, a
blockchain-based permanent storage network, has worked in
practice for several years [23].

Note that this scheme only allows for retrieval of individual
pieces if their ID is previously known, as they are content-
addressed. We may sidestep this issue, if we instead address
pieces by the hash of their index, as they are created, allowing
nodes to more easily fetch specific periods of the history.
We may also extend this schema with a secondary layer
of resolvers, in order to allow for the efficient retrieval of
particular blocks, transactions, or any arbitrary object by ID, as
is often by required by light clients. To accomplish this, each
farmer allocates a small, configurable amount of memory, in
which they retain a mapping between those resolvers closest
to their ID and the index of the piece where the underlying
data is stored. A light client can then query some object by
ID, obtaining its storage index, before fetching the full piece
and extracting out the required data. Farmers may optionally
maintain an ephemeral cache of those items that are most
popular within the DHT itself.

D. Cost of Storage

To ensure the history does not grow beyond total network
storage capacity, we modify the transaction fee mechanism
such that it dynamically adjusts in response to the replication
factor. Recall that in Bitcoin, the base fee rate is a function
of the size of the transaction in bytes, not the amount of
BTC being transferred. We extend this equation by including a
multiplier, derived from the replication factor. This establishes
a mandatory minimum fee for each transaction, which reflects
its perpetual storage cost. The multiplier is recalculated each
epoch, from the estimated network storage and the current size
of the history. The higher the replication factor, the cheaper the
cost of storage per byte. As the replication factor approaches



one, the cost of storage asymptotically approaches infinity.
As the replication factor decreases, transaction fees will rise,
making farming more profitable, and in-turn attracting more
capacity to the network. This allows the cost of storage to
reach an equilibrium price as a function of the supply of, and
demand for, space.

V. COMPUTATION

Farmers seek to dedicate all available disk space to con-
sensus while preforming as little redundant computation as
possible. However, to be assured that they remain on the
longest valid chain they must compute all intermediate state
transitions, which implies they also maintain the state. As
the burden of maintaining the state and computing transitions
grows larger, both the farmer’s and verifier’s dilemmas will
present themselves, leading farmers to sacrifice security for
higher rewards at a lower cost, by either becoming light clients
or joining a trusted farming pool. In order to resolve both
dilemmas, we require a method which relieves farmers of
this burden, while still allowing them to be certain that they
are extending the longest valid chain. Critically, this method
must not degrade the liveness, fairness, or safety of block
production.

The solution we propose follows the classic technique in
distributed systems of decoupling consensus and computation.
In this system, farmers are solely responsible for providing
subjective and probabilistic consensus over the ordering of
transactions, while a separate class of executor nodes com-
pute the objective and deterministic result of that ordering.
Executors are selected through a stake-based election, separate
from block production, and analogous to the block finalization
technique proposed by Casper FFG [24]. Executors are incen-
tivized by sharing transactions fees with farmers, while being
held accountable through a system of non-interactive fraud
proofs [25] and slashing [26].

While ostensibly similar to, and certainly influenced by,
Flow [27]–[29], our approach is far simpler (two, not four
classes of nodes), retains compatibility with Nakamoto con-
sensus (as opposed to BFT style consensus), and maintains the
honest majority security assumption. We also take inspiration
from the authors of Truebit [30], who first recognized that
optimistic off-chain computation, with fallbacks to on-chain
verification, could be used to realize a trustless decentralized
mining pool, which is largely what we accomplish here. How-
ever, unlike Truebit, we employ a system of non-interactive
fraud proofs, while resolving the verifier’s dilemma in an alto-
gether different manner. Unlike protocols such as ChainSpace
[31] and LazyLedger [32], which achieve decoupling by
delegating computation to clients, our system retains global
state, allowing for cross-contract calls and composability of
applications.

Note that this approach is entirely different from hybrid
PoC / PoS consensus mechanisms employed by other storage-
based blockchains. Filecoin [33] requires staking proportionate
to one’s storage as a pre-condition for farming, sacrificing the
permissionless nature and dynamic availability of Nakamoto

consensus. Mass 4 provides a dual incentive structure whereby
anyone may produce blocks and earn rewards by either
staking or farming. We instead clearly distinguish between a
permissionless farming mechanism for block production and
permissioned staking mechanism for block finalization.

A. Overview

We begin by restricting the role of farmers to simply provid-
ing a subjective ordering over potentially valid transactions.
To do this, a farmer collects transactions as normal, while
only verifying that the sender has provided a valid signature
and is able to cover the fee. When a farmer finds a PoR
which satisfies the storage audit, they will bundle all valid
transactions into a new block, while committing to the last
valid state root proposal they observe. Since farmers no longer
compute the new state root themselves, they do not need to
maintain the code, state, or account balances for any contracts.
Instead they must only maintain the much smaller set of
balances (and nonces) for all Externally Owned Accounts
(EOAs). This has the added benefit of allowing blocks to
propagate faster (and reducing the probability of forks) as
farmers need only verify the PoR and whether or not the
block contains potentially valid transactions, before relaying
the block to their peers.

A separate class of executor nodes will then maintain the
full state and apply transactions, returning the new proposed
state root. For each new block, a small constant number
of executors are chosen through a stake-weighted election.
Anyone may participate in execution by syncing the state and
placing a small deposit. To determine if they are elected, each
executor will use the PoR hash as the input to a VRF linked
to their deposit and weighted by their proportion of the total
stake. Regardless of whether or not they are elected, each
executor will then apply each transaction to the state, with
all appropriate state transition functions, in the order specified
by the block. As each transaction is executed, they will
incrementally commit to an intermediate state root, forming
an execution trace, while also compiling an aggregate diff of
all EOA balances.

Note that any non-elected executor who skips the state
update procedure will be unable to propose a new valid state
root, in the event they are elected for some future block.
All elected executors will then broadcast an execution receipt
(ER), consisting of the VRF proof, the final state root, a
Merkle root of all intermediate state roots, an execution trace,
and the EOA balances diff. Upon arrival and validation of the
ER, each farmer will optimistically apply the balances diff,
while noting the new proposed state root to expect (or embed)
in the next block.

B. Retaining Liveness

Considering the asynchronous nature of the network, the
presence of byzantine actors, and the probabilistic nature of
both block production and execution, we cannot expect that

4https://massnet.org



these two processes will always alternate smoothly. In the
event that a farmer is chosen to produce a new block before
they receive a valid ER for the last block, we still allow
them to publish the block without an ER.5 This disruption
could occur for several possible reasons: the new block was
created soon after its parent, either before execution could be
completed, or the ER could fully propagate across the network;
no executor was actually elected to finalize the block; or the
elected executor/s chose to withhold the ER, in an effort to
attack the liveness of execution.

To recover from this event, we simply re-run the executor
election for each new block, while allowing any newly elected
executor to include all past ERs required to catch up, the new
ER for the latest block, and a cumulative EOA balances diff. In
the meantime, farmers may continue to verify new transactions
pessimistically, i.e., based on the lowest possible EOA balance
for the pending transactions set. While this may result in some
transactions being falsely flagged as illegal 6 it will not allow
an illegal transaction to make its way into a new block.

It is important to note that, as each executor election is
independent and random, the likelihood of this event recurring
decays exponentially for each new block. We also set the
election threshold such that on average a small constant
number of executors are elected each round, in order to
significantly decrease the probability that this event even
occurs at all. To handle the case where an adversary with
deep pockets consumes a super-majority of the stake without
actually running an executor, in order to attack the liveness
of execution, we allow the election threshold to dynamically
adjust itself in accordance with the observed availability of
executors.

C. Preserving Fairness

Farmers split transaction fee rewards evenly with all execu-
tors, based on the expected number of ERs for each block.7

For example, if 32 executors are elected, the farmer will take
half of the all transaction fees, while each executor will take
1/64. A farmer is incentivized to include all ERs which finalize
execution for its parent block because doing so will allow it to
claim more of its share of the rewards for its own block. For
example, if the farmer only includes 16 out of 32 expected
ERs, it will instead receive 1/4 (not 1/2) of total rewards,
while each of the 16 executors will still receive 1/64. Any
remaining shares will then be escrowed within a treasury
account under the control of the community of token holders,
with the aim of incentivizing continued protocol development.
Overall, unclaimed funds should remain negligible.

In the event more than 32 ERs are included, the farmer’s
share will remain the same, while executors will be diluted
accordingly, in order to ensure that the dynamic election

5While the farmer may instead choose to wait for a valid ER (in the case
of a network delay), they do so at the risk of generating a fork and forfeiting
their block reward.

6With respect to the inability for the sender to cover the transaction fee
7We use this rate for explanatory purposes, while noting that in order to

minimize the plutocratic nature of PoS, executor shares should be smaller in
practice.

threshold maintains the correct balance. Critically, this reward
sharing may not be retroactive, else it would incentivize selfish
executors to withhold ERs for certain farmers who produce
subsequent blocks, with whom they may collude. We note that
this scheme is also compatible with a delegated or nominated
staking mechanism, but unlike many proof-of-stake consensus
protocols, has no strict upper bound on the number of delegates
or nominees.

D. Ensuring Validity

In the event that any elected executor proposes an invalid
state transition, all honest executors and full validating nodes
will immediately recognize this and react accordingly. Recall
that unlike farming, execution is entirely objective and deter-
ministic. For any block and initial state, there exists one, and
only one, valid final state and execution receipt, upon which
all honest executors will arrive.

Any honest executor may then easily inspect the execution
trace for the point of divergence, and compile a fraud proof
consisting of:

1) The initial state for all accounts touched by the transac-
tion.

2) All state transition functions (i.e., the contract code).
3) A commitment to the valid output state.
4) Merkle inclusion proofs for each above.
Any node, given the execution trace and fraud proof can

determine the validity of the ER by:
1) Verifying the Merkle inclusion proofs for the input state

and code against the last valid intermediate state root.
2) Applying all state transition functions to the input state.
3) Verifying the output state matches the commitment, and

that the Merkle inclusion proof is valid for a different
intermediate state than was witnessed by the ER. .

If the fraud proof is valid, the executor who proposed the
invalid ER will see their entire deposit confiscated and placed
within the protocol treasury. For this to occur, both the invalid
ER and the fraud proof must be included in the chain. This
means that farmers must reference all proposed ERs they
observe, when authoring a new block, while knowing that all
invalid ERs will quickly be sanitized out of the ledger. This
will result in a (retained) re-org of the chain of execution re-
ceipts, without impacting the ordering of transactions. Instead
of including the entire ER, farmers need only record the much
smaller header, consisting of the VRF proof and a Merkle root
over all intermediate state transitions.

In the expected case, where executors are economically
rational, all ERs will be valid, and fraud proofs will not
be needed. If executors are dishonest, a separate fraud proof
would need to be generated for each invalid ER. Any malicious
executor who controlled a majority of stake could then impose
a limited denial of service (DoS) attack on the chain by
creating many different, invalid ERs, forcing honest nodes
to generate the corresponding fraud proofs and occupying
precious block space. If we make the minimum executor stake
deposit larger than the expected cost of simply occupying the



block space with a transaction (i.e., the equivalent gas cost)
then it would always be more rational to DoS the network by
simply creating large transactions with sufficient fees to store
some arbitrary data or perform some arbitrary computation, as
can already be done today on Ethereum.

E. Addressing the Verifier’s Dilemma

Most schemes which rely on fraud proofs employ bounties,
as an incentive to circumvent the tricky verifier’s dilemma.
We note that since all fraud proofs are canonical for the
same invalid ER, any reward mechanism could easily be front-
run. Instead of forwarding a fraud proof as is, any executor
could just as easily claim it as their own. Ultimately, this
would create an incentive for farmers and executors to collude,
such that the farmer who creates the block would claim the
fraud proof as their own. While this could be constrained by
requiring a deposit to participate as a verifier, it would not
solve the problem. We might also try to elect one or more
verifiers under a similar scheme, but this would significantly
degrade the liveness of fraud proof generation.

Instead, we rely on the fact that all executors may act
as verifiers at negligible additional cost, as they are already
required to maintain the valid state transitions in order to
propose new ERs. If we further require them to reveal fraud
in order to protect their own stake and claim their share of
the rewards, in the event that they themselves are elected,
then we can provide a more natural solution to the verifier’s
dilemma. We achieve this by similarly punishing any executor
who extends an invalid ER without first demonstrating fraud. It
is worth noting that farmers also have an incentive to include
both invalid ERs and their corresponding fraud proofs in a
new block, as without them, any new valid ERs for the parent
block will not be accepted, reducing the farmers share of its
available rewards.

Since multiple executors will be elected each round, lazy
executors could still perhaps wait for some other more eager
executors to generate the fraud proof first. If we also require
that each ER include a commitment to each fraud proof, for
each invalid ER witnessed by the previous block, then we
can ensure that executors may not release the ER until they
have first created (or seen) all required fraud proofs. Given the
network delay and a stochastic block production process, any
elected executor who waits for all valid fraud proofs before
releasing their own ER risks being left out of the next block
and missing out on their share of the rewards. It is therefore
rational for an executor to do the negligible and rare extra
work required to generate the fraud proof locally in order to
release their own ER as soon as possible.

In addition to executors, any full node may also monitor the
network and generate fraud proofs, by virtue of the fact that
no deposit is required to act as verifier. Since fraud proofs
are canonical, any node may generate and propagate them
locally, without consuming any more bandwidth than if they
had simply received them and passed them on. This has the
benefit of speeding up fraud proof propagation, while further
strengthening the security guarantees. By allowing anyone to

propose a fraud proof we are able to ensure the validity of the
chain in the face of a dishonest majority of executors, allowing
the system remain secure as long as a single honest executor
remains connected to at least one honest farmer.

F. Maintaining Safety

We define safety as the property that a transaction,
once included in the ledger, may not subsequently be re-
verted. Nakamoto consensus only provides probabilistic safety,
through the k-deep confirmation rule, which states that for a
given adversarial fraction of consensus resources, the probabil-
ity that a transaction may be reverted decreases exponentially
with each new block. Our goal is to simply retain this property.

To do this, we must first distinguish between illegal and
invalid transactions. Strictly speaking, any transaction which
circumvents the DoS resistance mechanism of the transaction
fee is illegal, and should never be included in the ledger.
Farmers enforce legality by ensuring that a transaction has
a valid signature and can cover the specified fee. We then
define a valid transaction as one which results in a valid
state transition. Executors enforce the validity of transactions
by applying them deterministically in the order specified by
farmers. It is important to recognize that invalid transactions
may certainly be legal, and by no means imply malicious
intent, as their execution is not guaranteed to reflect the same
global state witnessed at their creation. Accordingly, invalid
transactions are simply ignored by all honest executors.

It then follows that dishonest executors may only temporar-
ily influence the apparent safety of the chain by making an
invalid transaction appear valid, but they may not revert a
transaction, as they have no way to exclude it from the pre-
determined set of potentially valid transactions. Farmers alone
have the ability to do this, through an intentional fork, which,
following Nakamoto’s analysis, may only be accomplished
with negligible probability for sufficient k [1]. Moreover, even
if many invalid ERs are included in the chain, the time it
takes to recognize them as such will always be less than k.
Therefore, our safety guarantees remain the same, even in the
presence of a dishonest majority of executors, given that we
maintain an honest majority of farmers.

Recall that when evaluating an ER, farmers only check to
ensure the VRF proof is valid, as they have no way of knowing
if it does indeed reflect a valid state transition. Even if they
knew it did not, they would still need to include the invalid
ER, so that it could be referenced by its corresponding fraud
proof. Since we expect a small constant number of ERs for
each block, and presuppose economically motivated executors,
we expect that in the average case all ERs will agree, allowing
farmers to optimistically apply the EOA balances diff and
continue collecting new transactions. In the event that one
or more ERs disagree, a farmer will instead screen new
transactions pessimistically and wait until enough fraud proofs
have arrived to rule out all but one remaining valid ER.

In the unlikely event that all executors agree on the same
invalid ER, these dishonest executors may then only convince
a farmer that a proposed ER is valid for as long as it takes



for the farmer to see a valid fraud proof, which is largely a
function of the network propagation delay. For a given delay
D, the maximum amount of time for a farmer to see the fraud
proof is 2D plus the proof generation time. As D must already
be a small fraction of the expected farming rate, for any secure
implementation of Nakamoto consensus, we can expect that
with high probability all fraud proofs will be seen within two
blocks.

Perhaps the worst act a dishonest executor can achieve
is to confuse farmers as to the legality of transactions by
presenting a fraudulent EOA balances diff as part of an invalid
ER. This would allow them to insert illegal transactions into
the next block while preventing many legal ones from being
selected. As previously mentioned, farmers only apply the
diff optimistically if there are no conflicting ERs for the last
block. This means that a dishonest party would first need
to control a super-majority of stake and then hope that a
single honest executor was not still elected. Even then, any
illegal transactions will still be recognized as such by honest
executors and will sanitized from the ledger, while costing the
attacker dearly in forfeited stake.

G. Sub-Linear Synchronization

As new farmers join the network, they must sync from
genesis, to ensure they work to extend the longest valid chain.
Traditionally, this would be done by verifying the PoR and
state transitions for each block. Since we wish to prevent
farmer’s from having to maintain the state, even during initial
sync, we require an alternative which still allows them to be
assured the chain is valid. If they instead only sync the block
headers, they would still need to expend computation and
bandwidth linear in the height of the chain. This is made worse
by the fact that we do not embed encodings or Merkle proofs
within blocks, which means they would have to manually
verify each PoR, by retrieving the piece and its Merkle proof
from the DHT, and then re-derive each encoding from its
inputs.

To allow farmers to be assured that they are on the longest
chain, while only having to download and manually verify
blocks logarithmic in the chain’s height, we implement a
super-light client, inspired by Flyclient [34]. To allow this,
we must first extend the protocol such that we incrementally
commit to each new block using a Merkle Mountain Range.
When a new farmer joins the network, they query peers for
the most recent block, taking that as the supposed height of
the chain. They then iteratively divide the chain in half (by
index), and randomly select a block in the left half, before
fetching the block from the DHT, reconstructing it in full
and manually verifying the PoR. If everything checks out, the
farmer continues, splitting the right half of the chain once
more. If they reach the head of the chain, and all blocks are
valid, then, with high probability they are on the longest chain.

For a farmer to be certain they are on the longest valid chain,
in the presence of multiple candidate chains, they employ a
simple process of elimination. To eliminate chains which are
the product of a long-range attack, the farmer compares the

average height of solutions for each chain to the expectation,
favoring those which are closest. To further eliminate chains
which include an invalid state transition, perpetuated by a
dishonest majority, the farmer need only ask each proposing
peer for the latest valid fraud proof it has observed. If at least
one peer is honest, the farmer will be able to obtain fraud
proofs for all invalid chains, leaving the farmer on the longest
valid chain.

H. Optimizations

Following [25], we note that the (potentially large) execu-
tion trace within an ER is only needed if the new proposed
state root is invalid, and then only by executors (or any
full node), as they are the only ones who may generate the
corresponding fraud proof. Farmers however only need to be
assured that the execution trace is available, so that any single
honest executor may recover the full trace and generate a fraud
proof if it is indeed invalid. We can then require executors to
erasure code the trace, such that any node can be assured
that the coding was done correctly and that the full data
is available, while only having to sample a small constant
fraction of the data at random. We further note that in the
expected case, only farmers would need to sample the data,
as executors would be able to immediately tell if the ER is
invalid from its header alone.

While all honest ERs for a given block will have the same
body, recall that the size of the header grows linearly with
the expected number of elected executors for each block, due
to the additional proofs-of-election. We can reduce this to a
constant size by replacing the VRF with a non-interactive
deterministic signature scheme, such as BLS [35], which
would allow us to compress all honest proofs-of-election into
a single public key and a single signature.

We may also implement one of several stateless blockchain
proposals [36]–[38], which would allow us to entirely relieve
farmers, and perhaps executors, of the burden of maintaining
the state, while also removing the EOA balances diff from
the ER. At the present time, these schemes impose additional
security assumptions and computational overhead for farmers,
while increasing the complexity of the user experience. As
these schemes become more developed, we expect they could
be used to remove the need for farmers to maintain the EOA
balances entirely, while perhaps fully resolving the farmer’s
dilemma.

With respect to fraud proofs, we note that although they are
rarely expected, they may still be quite large, as their size is
only bounded by the maximum size of the code and state for
any given contract account, as a function of the total number of
contract calls that may be included in a transaction, typically
constrained by the block gas limit itself. To reduce the size
of these inputs, we may increase the number of intermediate
state commitments required for the execution trace, noting
the larger ER size will be mitigated with the erasure coding
scheme presented earlier. We may further reduce the size of
the contract code required for the proof by storing it within



an efficient accumulator, such as a Merkle tree, in a manner
similar to the MAST proposal [39].

VI. CONCLUSION

Consensus based on proofs-of-archival-storage yields an
incentive-compatible PoC protocol, without sacrificing the
security guarantees or dynamic availability of Nakamoto con-
sensus. These properties are maintained, despite our decou-
pling of consensus and computation, as long as at least one
honest executor (or full node) remains connected to the farmer
network. In other words, the protocol remains secure even if
a majority of executors are dishonest, given that a majority
of farmers remain honest. By removing the requirement that
farmers maintain the history, compute every state transition
and, by implication, maintain the state, the farmer’s dilemma
is largely resolved. This has the added benefit of lowering the
barriers to entry for farming, such that it may be more easily
done with commodity hardware, while allowing for scaling
of execution up to the limits of the hardware employed by
executors. In many ways, this achievement may be likened to
a decentralized farming pool, in which trusted pool operators
are replaced with verifiable and accountable executors.

We are still left wondering to what extent execution may
be scaled, without sacrificing some meaningful level of de-
centralization. Luckily, many recent works have demonstrated
that it is indeed possible to scale Nakamoto consensus, at
least without sacrificing security or dynamic availability, in
order to achieve optimal throughput [40], fast finality [41],
and horizontal scaling [42]8. If we can also achieve a fully
stateless version of farming, then the blockchain bloat incurred
by scalability will no longer be a concern, at least as it relates
to decentralization. These questions shall be fully analyzed in
a forthcoming work.

We close by noting that although Subspace, like Ethereum,
is designed to support any arbitrary computation, we believe
that is especially well-suited to decentralized applications
which either produce or require large quantities of data. In
contrast to mutable and ephemeral storage services such as
Sia [43], Storj [44], or Filecoin [33], Subspace provides a
permanent storage layer, better suited for blockchain-based
computation. Unlike other permanent storage networks, such
as Arweave [23], we are able to efficiently price storage based
on network capacity, while making that storage available to a
global execution layer. Ultimately we believe Subspace reflects
a model for a sustainable, scalable and incentive-compatible
data availability layer, which holds true to Nakamoto’s vision
for a more decentralized and democratic future.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryp-
tography Mailing list at https://metzdowd.com, 03 2009.

[2] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, 2014.

8We note that these schemes also allow for more frequent reward distribu-
tion to farmers, removing the last possible benefit of pooled farming.

[3] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–
32, 2014.

[4] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in Annual international conference on the
theory and applications of cryptographic techniques, pp. 281–310,
Springer, 2015.

[5] S. D. Lerner, “Proof of unique blockchain storage,” Sep 2015.
[6] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying incentives

in the consensus computer,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 706–719,
2015.

[7] B. Fisch, “Poreps: Proofs of space on useful data.,” IACR Cryptol. ePrint
Arch., vol. 2018, p. 678, 2018.

[8] S. Park, A. Kwon, G. Fuchsbauer, P. Gaži, J. Alwen, and K. Pietrzak,
“Spacemint: A cryptocurrency based on proofs of space,” in Inter-
national Conference on Financial Cryptography and Data Security,
pp. 480–499, Springer, 2018.

[9] B. Cohen and K. Pietrzak, “The chia network blockchain,” 2019.
[10] T. Moran and I. Orlov, “Simple proofs of space-time and rational proofs

of storage,” in Annual International Cryptology Conference, pp. 381–
409, Springer, 2019.

[11] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin: Repur-
posing bitcoin work for data preservation,” in 2014 IEEE Symposium
on Security and Privacy, pp. 475–490, IEEE, 2014.

[12] J. Benet, D. Dalrymple, and N. Greco, “Proof of replication,” Protocol
Labs, July, vol. 27, p. 20, 2017.

[13] M. Van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and
N. Triandopoulos, “Hourglass schemes: how to prove that cloud files are
encrypted,” in Proceedings of the 2012 ACM conference on Computer
and communications security, pp. 265–280, 2012.

[14] A. K. Lenstra and B. Wesolowski, “A random zoo: sloth, unicorn, and
trx.,” IACR Cryptol. ePrint Arch., vol. 2015, p. 366, 2015.

[15] H. K. Alper, “Network time with a consensus on clock,” Cryptology
ePrint Archive, Report 2019/1348, 2019.

[16] X. Wang, G. Kamath, V. Bagaria, S. Kannan, S. Oh, D. Tse, and
P. Viswanath, “Proof-of-stake longest chain protocols revisited,” arXiv
preprint arXiv:1910.02218, 2019.

[17] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual Interna-
tional Cryptology Conference, pp. 357–388, Springer, 2017.

[18] V. Bagaria, A. Dembo, S. Kannan, S. Oh, D. Tse, P. Viswanath, X. Wang,
and O. Zeitouni, “Proof-of-stake longest chain protocols: Security vs
predictability,” arXiv preprint arXiv:1910.02218, 2019.

[19] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing,
pp. 654–663, 1997.

[20] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[21] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems, pp. 53–65, Springer, 2002.

[22] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on
Economics of Peer-to-Peer systems, vol. 6, pp. 68–72, Berkeley, CA,
USA, 2003.

[23] S. Williams, V. Diordiiev, L. Berman, and I. Uemlianin, “Arweave:
A protocol for economically sustainable information permanence,” ar-
weave. org, Tech. Rep, 2019.

[24] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

[25] M. Al-Bassam, A. Sonnino, and V. Buterin, “Fraud proofs: Maximising
light client security and scaling blockchains with dishonest majorities,”
arXiv preprint arXiv:1809.09044, vol. 160, 2018.

[26] V. Buterin, “Slasher: A punitive proof-of-stake algorithm,” Jan 2014.
[27] A. Hentschel, D. Shirley, and L. Lafrance, “Flow: Separating consensus

and compute,” arXiv preprint arXiv:1909.05821v1, 2019.
[28] A. Hentschel, Y. Hassanzadeh-Nazarabadi, R. Seraj, D. Shirley, and

L. Lafrance, “Flow: Separating consensus and compute–block formation
and execution,” arXiv preprint arXiv:2002.07403v1, 2020.



[29] A. Hentschel, D. Shirley, L. Lafrance, and M. Zamski, “Flow: Sep-
arating consensus and compute–execution verification,” arXiv preprint
arXiv:1909.05832, 2019.

[30] J. Teutsch and C. Reitwießner, “Truebit: a scalable verification solution
for blockchains,” White Papers, 2018.

[31] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A sharded smart contracts platform,” arXiv preprint
arXiv:1708.03778, 2017.

[32] M. Al-Bassam, “Lazyledger: A distributed data availability ledger with
client-side smart contracts,” arXiv preprint arXiv:1905.09274, 2019.

[33] J. Benet and N. Greco, “Filecoin: A decentralized storage network,”
Protoc. Labs, pp. 1–36, 2018.

[34] B. Bünz, L. Kiffer, L. Luu, and M. Zamani, “Flyclient: Super-light
clients for cryptocurrencies,” in 2020 IEEE Symposium on Security and
Privacy (SP), pp. 928–946, IEEE, 2020.

[35] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” Journal of cryptology, vol. 17, no. 4, pp. 297–319, 2004.

[36] D. Boneh, B. Bünz, and B. Fisch, “Batching techniques for accumu-
lators with applications to iops and stateless blockchains,” in Annual
International Cryptology Conference, pp. 561–586, Springer, 2019.

[37] A. Tomescu, I. Abraham, V. Buterin, J. Drake, D. Feist, and D. Khovra-
tovich, “Aggregatable subvector commitments for stateless cryptocur-
rencies,” in International Conference on Security and Cryptography for
Networks, pp. 45–64, Springer, 2020.

[38] S. Agrawal and S. Raghuraman, “Kvac: Key-value commitments for
blockchains and beyond,” in International Conference on the Theory
and Application of Cryptology and Information Security, pp. 839–869,
Springer, 2020.

[39] J. Rubin, M. Naik, and N. Subramanian, “Merkelized abstract syntax
trees,” 2014.

[40] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Prism:
Deconstructing the blockchain to approach physical limits,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pp. 585–602, 2019.

[41] S. Li and D. Tse, “Taiji: Longest chain availability with bft fast
confirmation,” 2020.

[42] R. Rana, S. Kannan, D. Tse, and P. Viswanath, “Free2shard: Adaptive-
adversary-resistant sharding via dynamic self allocation,” arXiv preprint
arXiv:2005.09610, 2020.

[43] D. Vorick and L. Champine, “Sia: Simple decentralized storage,” Neb-
ulous Inc, 2014.

[44] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, “Storj a peer-
to-peer cloud storage network,” 2014.


